
Bayesian Inference

Introduction

The frequentist approach to inference holds that probabilities
are intrinsicially tied (unsurprisingly) to frequencies. This interpreta-
tion is actually quite natural. What, according to a frequentist, does
it mean to say that the probability a fair coin will come up heads
is 1/2? Well, simply that in an infinite sequence of independent
tosses of the same coin, half will come up heads (loosely speaking).
Many random experiments are in fact repeatable, and the frequentist
paradigm readily applies in such situations.

It is often desirable, however, to assign probabilities to events
that are not repeatable. When the weather forecast tells you that
there is a 90% chance of rain tomorrow, for example, it is assigning
a probability to a one-off event, since tomorrow only happens once!
What’s more, there are many scenarios in which we would like to
assign probabilities to non-random events that nevertheless involve
uncertainty. A bank might be interested in designing an automated
system that computes the probability that a signature on a check
is genuine. Even though there is an underlying ground truth (the
signature is either genuine or not), there is uncertainty from the
bank’s point of view, so the use of probability is justified. The pure
frequentist interpretation of probabilities cannot be squared up with
either of these use cases.

Bayesian inference takes a subjective approach and views prob-
abilities as representing degrees of belief. It is thus perfectly valid
to assign probabilities to non-repeating and non-random events, so
long as there is uncertainty that we wish to quantify. The fact that
Bayesian probabilities are subjective does not mean they are arbitrary.
The rules for working with Bayesian probabilities are identical to
those for working with the frequentist variety. Bayesians are simply
happy to assign probabilities to a larger class of events than frequen-
tists are.

The essential spirit of Bayesian inference is encapsulated by Bayes’
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theorem.

Bayes’ theorem

Suppose that during a routine medical examination, your doctor in-
forms you that you have tested positive for a rare disease. You are
initially distressed, but as a good statistician, you are also aware that
these tests can be finicky and there is some uncertainty in their re-
sults. Unfortunately for you, this test is quite accurate — it reports
a positive result for 95% of the patients with the disease, and a neg-
ative result for 95% of the healthy patients. The outlook does not
appear to be good.

As a good Bayesian statistician, however, you realize that these
test accuracies are not quite the bottom line, as far as your health
is concerned. If we let “+” and “−” denote a positive and negative
test result, respectively, then the test accuracies are the conditional
probabilities

P(+ | disease) = 0.95,

P(− | healthy) = 0.95.

But what you are really interested in is

P(disease | +).

In order to compute this last quantity, we need to “turn around”
the conditional probabilities encoded in the test accuracies. This is
achieved by Bayes’ theorem.

Theorem 0.0.5 (Bayes’ Theorem). Let Y1, . . . , Yk be a partition of the
sample space Ω and let X be any event. Then

P(Yj|X) =
P(X|Yj)P(Yj)

∑k
i=1 P(X|Yi)P(Yi)

.

Since “disease” and “healthy” partition the sample space of out-
comes, we have

P(disease|+) =
P(+|disease)P(disease)

P(+|disease)P(disease) + P(+|healthy)P(healthy)
.

Importantly, Bayes’ theorem reveals that in order to compute the
conditional probability that you have the disease given the test was
positive, you need to know the “prior” probability you have the
disease P(disease), given no information at all. That is, you need to
know the overall incidence of the disease in the population to which
you belong. We mentioned earlier that this is a rare disease. In fact,
only 1 in 1,000 people are affected, so P(disease) = 0.001, which
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in turn implies P(healthy) = 0.999. Plugging these values into the
equation above gives

P(disease | +) ≈ 0.019.

In other words, despite the apparent reliability of the test, the prob-
ability that you actually have the disease is still less than 2%. The
fact that the disease is so rare means that most of the people who test
positive will be healthy, simply because most people are healthy in
general. Note that the test is certainly not useless; getting a positive
result increases the probability you have the disease by about 20-fold.
But it is incorrect to interpret the 95% test accuracy as the probability
you have the disease.

The Bayesian procedure

The above example is illustrative of the general procedure for doing
Bayesian inference. Suppose you are interested in some parameter θ.

1. Encode your initial beliefs about θ in the form of a prior distribu-
tion P(θ).

2. Collect data X via experimentation, observation, querying, etc.

3. Update your beliefs using Bayes’ theorem to the posterior distribu-
tion

P(θ|X) =
P(X|θ)P(θ)

P(X)
.

4. Repeat the entire process as more data become available.

Prior, likelihood, posterior

As it turns out, Bayes’ theorem is so fundamental to Bayesian infer-
ence that special names are given to the terms in the equation.

Prior

The prior distribution is the unconditional distribution P(θ). The
goal of the prior is to capture our pre-existing knowledge about θ,
before we see any data. In the medical testing example, we used the
incidence of the disease in the population as the prior probability that
any particular individual has the disease.
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Likelihood

In Bayesian and frequentist statistics alike, the likelihood of a param-
eter θ given data X is P(X|θ). The likelihood function plays such an
important role in classical statistics that it gets its own letter:

L(θ|X) = P(X|θ).

This notation emphasizes the fact that we view the likelihood as a
function of θ for some fixed data X.

Figure 4 shows a random sample x of 8 points drawn from a stan-
dard normal distribution, along with the corresponding likelihood
function of the mean parameter.

Figure 4: The orange curve shows
the likelihood function for the mean
parameter of a normal distribution
with variance 1, given a sample of 8

points (middle) from a standard normal
density (top).

In general, given a sample of n independent and identically dis-
tributed random variables X1, . . . , Xn from some distribution P(X|θ),
the likelihood is

L(θ|X1, . . . , Xn) = P(X1, . . . , Xn|θ)

=
n

∏
i=1

P(Xi|θ).

In the case of the normal distribution with variance 1 and unknown
mean θ, this equation suggests a way to visualize how the likelihood
function is generated. Imagine sliding the probability density func-
tion of a Normal(θ, 1) distribution from left to right by gradually
increasing θ. As we encounter each sample Xi, the density “lifts”
the point off the x-axis. The dotted lines in the middle panel of Fig-
ure 5 represent the quantities P(Xi|θ). Their product is precisely the
likelihood, which is plotted in orange at the bottom of Figure 5.
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Figure 5: Each orange dotted line in the
middle panel represents the quantity
P(xi |θ). The product of the lengths of
these dotted lines is the likelihoood for
the value of θ that produced the density
in blue.

We can see that the likelihood is maximized by the value of θ

for which the density of a Normal(θ, 1) distribution is able to lift
the most points the furthest off the x-axis. It can be shown that this
maximizing value is given by the sample mean

X̄ =
1
n

n

∑
i=1

Xi.

In this case we say that the sample mean is the maximum likelihood
estimator of the parameter θ.

In Bayesian inference, the likelihood is used to measure quantify
the degree to which a set of data X supports a particular parameter
value θ. The essential idea is that if the data could be generated by a
given parameter value θ with high probability, then such a value of θ

is favorable in the eyes of the data.

Posterior

The goal of Bayesian inference is to update our prior beliefs P(θ)
by taking into account data X that we observe. The end result of
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this inference procedure is the posterior distribution P(θ|X). Bayes’
theorem specifies the way in which the posterior is computed,

P(θ|X) =
P(X|θ)P(θ)

P(X)
.

Since in any particular inference problem, the data is fixed, we are
often interested in only the terms which are functions of θ. Thus, the
essence of Bayes’ theorem is

P(θ|X) ∝ P(X|θ)P(θ),

or in words,

Posterior ∝ Likelihood× Prior,

where all the terms above are viewed as functions of θ. Our final
beliefs about θ combine both the relevant information we had a priori
and the knowledge we gained a posteriori by observing data.

Coin Tosses

To get an understanding of what the Bayesian machinery looks like
in action, let us return to our coin toss example. Suppose you just
found a quarter lying on the sidewalk. You are interested in deter-
mining the extent to which this quarter is biased. More precisely, you
wish to determine the probability p that the coin will come up heads.
The most natural way to determine the value of p is to start flipping
the coin and see what happens. So you flip the coin once and observe
that the coin comes up heads. What should you conclude?

It is tempting to say that we cannot conclude anything from a sin-
gle coin toss. But this is not quite true. The result of this toss tells us
at the very least that p 6= 0, whereas before the toss it was certainly
possible that p = 0 (perhaps both sides were tails). Furthermore, we
should now be slightly more inclined to believe that p takes on larger
values than we were before the toss. Which values we believe are
reasonable depends on what our prior beliefs were. Most of the coins
I have encountered in my life have been fair, or at least very close to
fair. So my prior distribution on the value of p for any particular coin
might look something like this.
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